A zero-indexed array A consisting of N integers is given. A triplet (P, Q, R) is triangular if 0 ≤ P < Q < R < N and:
- A[P] + A[Q] > A[R],
- A[Q] + A[R] > A[P],
- A[R] + A[P] > A[Q].
For example, consider array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20
Triplet (0, 2, 4) is triangular.
Write a function:
def solution(A)
that, given a zero-indexed array A consisting of N integers, returns 1 if there exists a triangular triplet for this array and returns 0 otherwise. For example, given array A such that:
A[0] = 10 A[1] = 2 A[2] = 5 A[3] = 1 A[4] = 8 A[5] = 20
the function should return 1, as explained above. Given array A such that:
A[0] = 10 A[1] = 50 A[2] = 5 A[3] = 1
the function should return 0.
Assume that:
- N is an integer within the range [0..1,000,000];
- each element of array A is an integer within the range [−2,147,483,648..2,147,483,647].
Complexity:
- expected worst-case time complexity is O(N*log(N));
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
Solution:
def solution(A): A.sort() for i in xrange(len(A) - 2): P, Q, R = A[i], A[i + 1], A[i + 2] if P + Q > R and Q + R > P and R + P > Q: return 1 else: return 0
Комментариев нет:
Отправить комментарий