Given an array A of N integers, we draw N discs in a 2D plane such that the I-th disc is centered on (0,I) and has a radius of A[I]. We say that the J-th disc and K-th disc intersect if J ≠ K and J-th and K-th discs have at least one common point.
Write a function:
def solution(A)
that, given an array A describing N discs as explained above, returns the number of pairs of intersecting discs. For example, given N=6 and:
A[0] = 1 A[1] = 5 A[2] = 2 A[3] = 1 A[4] = 4 A[5] = 0
intersecting discs appear in eleven pairs of elements:
- 0 and 1,
- 0 and 2,
- 0 and 4,
- 1 and 2,
- 1 and 3,
- 1 and 4,
- 1 and 5,
- 2 and 3,
- 2 and 4,
- 3 and 4,
- 4 and 5.
so the function should return 11.
The function should return −1 if the number of intersecting pairs exceeds 10,000,000.
Assume that:
- N is an integer within the range [0..100,000];
- each element of array A is an integer within the range [0..2147483647].
Complexity:
- expected worst-case time complexity is O(N*log(N));
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
def solution(A): B, M = [], 0 for i in xrange(len(A)): M += len(B) - binF(B, i - A[i]) if M > 10000000: return -1 B.insert(binF(B, i + A[i]), i + A[i]) return M def binF(A, B): iF, iL = 0, len(A) if iL == 0 or \ A[iL - 1] < B: return iL if A[0] > B: return iF while iF < iL: iM = iF + (iL - iF) / 2 if B <= A[iM]: iL = iM else: iF = iM + 1 return iF
Комментариев нет:
Отправить комментарий